Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Neurosurg Rev ; 47(1): 190, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658446

RESUMO

OBJECTIVE: We assessed types of cadaveric head and brain tissue specimen preparations that are used in a high throughput neurosurgical research laboratory to determine optimal preparation methods for neurosurgical anatomical research, education, and training. METHODS: Cadaveric specimens (N = 112) prepared using different preservation and vascular injection methods were imaged, dissected, and graded by 11 neurosurgeons using a 21-point scale. We assessed the quality of tissue and preservation in both the anterior and posterior circulations. Tissue quality was evaluated using a 9-point magnetic resonance imaging (MRI) scale. RESULTS: Formalin-fixed specimens yielded the highest scores for assessment (mean ± SD [17.0 ± 2.8]) vs. formalin-flushed (17.0 ± 3.6) and MRI (6.9 ± 2.0). Cadaver assessment and MRI scores were positively correlated (P < 0.001, R2 0.60). Analysis showed significant associations between cadaver assessment scores and specific variables: nonformalin fixation (ß = -3.3), preservation within ≤72 h of death (ß = 1.8), and MRI quality score (ß = 0.7). Formalin-fixed specimens exhibited greater hardness than formalin-flushed and nonformalin-fixed specimens (P ≤ 0.006). Neurosurgeons preferred formalin-flushed specimens injected with colored latex. CONCLUSION: For better-quality specimens for neurosurgical education and training, formalin preservation within ≤72 h of death was preferable, as was injection with colored latex. Formalin-flushed specimens more closely resembled live brain parenchyma. Assessment scores were lower for preparation techniques performed > 72 h postmortem and for nonformalin preservation solutions. The positive correlation between cadaver assessment scores and our novel MRI score indicates that donation organizations and institutional buyers should incorporate MRI as a screening tool for the selection of high-quality specimens.


Assuntos
Encéfalo , Cadáver , Imageamento por Ressonância Magnética , Neurocirurgia , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neurocirurgia/educação , Procedimentos Neurocirúrgicos/métodos
2.
J Neurol Surg B Skull Base ; 85(1): 95-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327513

RESUMO

Objective To describe the anatomy related to a novel approach to the petroclival region through the mandibular fossa for the treatment of petroclival and anterior pontine lesions. Design Five dry skulls were examined for surgical approach. Three adult cadaveric heads underwent bilateral dissection. One cadaveric head was evaluated with computed tomography after dissection. Setting This study was performed in an academic medical center. Participants Neurosurgical anatomy researchers performed this study using dry skulls and cadaveric heads. Main Outcome Measurements This was a proof-of-concept anatomical study. Results The mandibular fossa approach uses a vertical preauricular incision above the facial nerve branches. Removal of the temporomandibular joint exposes the mandibular fossa. The anterior boundary is the mandibular nerve at the foramen ovale, and the posterior boundary is the jugular foramen. The chorda tympani, eustachian tube, and tensor tympani muscle are sectioned. The carotid artery is transposed out of the petrous canal, and a petrosectomy is performed from Meckel's cave to the foramen magnum and anterior occipital condyle. Dural opening exposes the anterior pons, vertebrobasilar junction, bilateral vertebral arteries, and the ipsilateral anterior and posterior inferior cerebellar arteries. At completion, the temporomandibular joint is reconstructed with a prosthetic joint utilizing a second incision along the mandible. Conclusions The mandibular fossa approach is a new trajectory to the petroclival region and the anterior pons. It combines the more anterior angle of endoscopic approaches along with the enhanced control of open approaches. Further study is necessary before this approach is used clinically.

3.
World Neurosurg ; 182: e5-e15, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925146

RESUMO

BACKGROUND: Multicompartmental lesions of the anterior craniovertebral junction require aggressive management. However, the lesions can be difficult to reach, and the surgical procedure is difficult to understand. The aim of this study was to create a procedural, stepwise microsurgical educational resource for junior trainees to learn the surgical anatomy of the extreme lateral transodontoid approach (ELTOA). METHODS: Ten formalin-fixed, latex-injected cadaveric heads were dissected under an operative microscope. Dissections were performed under the supervision of a skull base fellowship-trained neurosurgeon who has advanced skull base experience. Key steps of the procedure were documented with a professional camera and a high-definition video system. A relevant clinical case example was reviewed to highlight the principles of the selected approach and its application. The clinical case example also describes a rare complication: a pseudoaneurysm of the vertebral artery. RESULTS: Key steps of the ELTOA include patient positioning, skin incision, superficial and deep muscle dissection, vertebral artery dissection and transposition, craniotomy, clivus drilling, odontoidectomy, and final extradural and intradural exposure. CONCLUSIONS: The ELTOA is a challenging approach, but it allows for significant access to the anterior craniovertebral junction, which increases the likelihood of gross total lesion resection. Given the complexity of the approach, substantial training in the dissection laboratory is required to develop the necessary anatomic knowledge and to minimize approach-related morbidity.


Assuntos
Dissecação , Base do Crânio , Humanos , Base do Crânio/cirurgia , Fossa Craniana Posterior/cirurgia , Fossa Craniana Posterior/anatomia & histologia , Procedimentos Neurocirúrgicos/métodos , Craniotomia
4.
J Neurosurg ; 140(1): 59-68, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410622

RESUMO

OBJECTIVE: The aim of this study was to assess the surgical use and applicability of a biportal bitransorbital approach. Single-portal transorbital and combined transorbital transnasal approaches have been used in clinical practice, but no study has assessed the surgical use and applicability of a biportal bitransorbital approach. METHODS: Ten cadaver specimens underwent midline anterior subfrontal (ASub), bilateral transorbital microsurgery (bTMS), and bilateral transorbital neuroendoscopic surgery (bTONES) approaches. Morphometric analyses included the length of the bilateral cranial nerves I and II, the optic tract, and A1; the area of exposure of the anterior cranial fossa floor; craniocaudal and mediolateral angles of attack (AOAs); and volume of surgical freedom (VSF; maximal available working volume for a specific surgical corridor and surgical target structure normalized to a height of 10 mm) of the bilateral paraclinoid internal carotid arteries (ICAs), bilateral terminal ICAs, and anterior communicating artery (ACoA). Analyses were conducted to determine whether the biportal approach was associated with greater instrument freedom. RESULTS: The bTMS and bTONES approaches provided limited access to the bilateral A1 segments and the ACoA, which were inaccessible in 30% (bTMS) and 60% (bTONES) of exposures. The average total frontal lobe area of exposure (AOE) was 1648.4 mm2 (range 1516.6-1958.8 mm2) for ASub, 1658.9 mm2 (1274.6-1988.2 mm2) for bTMS, and 1914.9 mm2 (1834.2-2014.2 mm2) for bTONES exposures, with no statistically significant superiority between any of the 3 approaches (p = 0.28). The bTMS and bTONES approaches were significantly associated with decreases of 8.7 mm3 normalized volume (p = 0.005) and 14.3 mm3 normalized volume (p < 0.001) for VSF of the right paraclinoid ICA compared with the ASub approach. No statistically significant difference in surgical freedom was noted between all 3 approaches when targeting the bilateral terminal ICA. The bTONES approach was significantly associated with a decrease of 105% in the (log) VSF of the ACoA compared with the ASub (p = 0.009). CONCLUSIONS: Although the biportal approach is intended to improve maneuverability within these minimally invasive approaches, these results illustrate the pertinent issue of surgical corridor crowding and the importance of surgical trajectory planning. A biportal transorbital approach provides improved visualization but does not improve surgical freedom. Furthermore, although it affords impressive anterior cranial fossa AOE, it is unsuitable for addressing midline lesions because the preserved orbital rim restricts lateral movement. Further comparative studies will elucidate whether a combined transorbital transnasal route is preferable to minimize skull base destruction and maximize instrument access.


Assuntos
Neuroendoscopia , Base do Crânio , Humanos , Adulto , Criança , Base do Crânio/cirurgia , Craniotomia/métodos , Neuroendoscopia/métodos , Fossa Craniana Anterior/cirurgia , Artéria Cerebral Anterior/cirurgia , Cadáver , Órbita/cirurgia
5.
J Neurosurg Case Lessons ; 6(12)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37756481

RESUMO

BACKGROUND: Intraoperative frozen sections play a critical role in surgical strategy because of their ability to provide rapid histopathological information. In cases in which intraoperative biopsy carries a significant risk of bleeding, intraoperative confocal laser endomicroscopy (CLE) can assist in decision-making. OBSERVATIONS: The authors present a rare case of a large sellar hemangioblastoma. Preoperative radiographic imaging and normal pituitary function suggested a differential diagnosis that included hemangioblastoma. The patient underwent partial preoperative embolization and a right-sided pterional craniotomy for resection of the lesion. Gross intraoperative examination revealed a highly vascular sellar lesion requiring circumferential dissection to minimize blood loss. The serious vascularity precluded intraoperative frozen section analysis, and CLE imaging was performed. CLE imaging provided excellent visualization of the remarkable vascular structure and characteristic histoarchitecture with microvasculature, intracytoplasmic vacuoles, and atypical cells consistent with hemangioblastoma. Resection and decompression of the chiasm was accomplished, and the patient was discharged with improved vision. The final histopathological diagnosis was hemangioblastoma. LESSONS: When the benefits of obtaining intraoperative frozen sections greatly outweigh the associated risks, CLE imaging can aid in decision-making. CLE imaging offers real-time, on-the-fly evaluation of intraoperative tissue without the need to biopsy a vascular lesion.

6.
J Neurosurg ; 139(4): 992-1001, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566787

RESUMO

OBJECTIVE: The eustachian tube (ET) limits endoscopic endonasal access to the infrapetrous region. Transecting or mobilizing the ET may result in morbidities. This study presents a novel approach in which a subtarsal contralateral transmaxillary (ST-CTM) corridor is coupled with the standard endonasal approach to facilitate access behind the intact ET. METHODS: Eight cadaveric head specimens were dissected. Endoscopic endonasal approaches (EEAs) (i.e., transpterygoid and inferior transclival) were performed on one side, followed by ST-CTM and sublabial contralateral transmaxillary (SL-CTM) approaches on the opposite side, along with different ET mobilization techniques on the original side. Seven comparative groups were generated. The length of the cranial nerves, areas of exposure, and volume of surgical freedom (VSF) in the infrapetrous regions were measured and compared. RESULTS: Without ET mobilization, the combined ST-CTM/EEA approach provided greater exposure than EEA alone (mean ± SD 288.9 ± 40.66 mm2 vs 91.7 ± 49.9 mm2; p = 0.001). The VSFs at the ventral jugular foramen (JF), entrance to the petrous internal carotid artery (ICA), and lateral to the parapharyngeal ICA were also greater in ST-CTM/EEA than in EEA alone (p = 0.002, p = 0.002, and p < 0.001, respectively). EEA alone, however, provided greater VSF at the hypoglossal canal (HGC) than did ST-CTM/EEA (p = 0.01). The SL-CTM approach did not increase the EEA exposure (p = 0.48). The ST-CTM/EEA approach provided greater exposure than EEA with extended inferolateral (EIL) or anterolateral (AL) ET mobilization (p = 0.001 and p = 0.02, respectively). The ST-CTM/EEA also increased the VSF lateral to the parapharyngeal ICA in comparison with EEA/EIL ET mobilization (p < 0.001) but not with EEA/AL ET mobilization (p = 0.36). Finally, the VSFs at the HGC and JF were greater in EEA/AL ET mobilization than in ST-CTM/EEA without ET mobilization (p = 0.002 and p = 0.004, respectively). CONCLUSIONS: Combining the EEA with the more laterally and superiorly originating ST-CTM approach allows greater exposure of the infrapetrous and ventral JF regions while obviating the need for mobilizing the ET. The surgical freedom afforded by the combined approaches is greater than that obtained by EEA alone.

7.
Neurosurg Focus ; 54(6): E2, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37283435

RESUMO

OBJECTIVE: Microanastomosis is one of the most technically demanding and important microsurgical skills for a neurosurgeon. A hand motion detector based on machine learning tracking technology was developed and implemented for performance assessment during microvascular anastomosis simulation. METHODS: A microanastomosis motion detector was developed using a machine learning model capable of tracking 21 hand landmarks without physical sensors attached to a surgeon's hands. Anastomosis procedures were simulated using synthetic vessels, and hand motion was recorded with a microscope and external camera. Time series analysis was performed to quantify the economy, amplitude, and flow of motion using data science algorithms. Six operators with various levels of technical expertise (2 experts, 2 intermediates, and 2 novices) were compared. RESULTS: The detector recorded a mean (SD) of 27.6 (1.8) measurements per landmark per second with a 10% mean loss of tracking for both hands. During 600 seconds of simulation, the 4 nonexperts performed 26 bites in total, with a combined excess of motion of 14.3 (15.5) seconds per bite, whereas the 2 experts performed 33 bites (18 and 15 bites) with a mean (SD) combined excess of motion of 2.8 (2.3) seconds per bite for the dominant hand. In 180 seconds, the experts performed 13 bites, with mean (SD) latencies of 22.2 (4.4) and 23.4 (10.1) seconds, whereas the 2 intermediate operators performed a total of 9 bites with mean (SD) latencies of 31.5 (7.1) and 34.4 (22.1) seconds per bite. CONCLUSIONS: A hand motion detector based on machine learning technology allows the identification of gross and fine movements performed during microanastomosis. Economy, amplitude, and flow of motion were measured using time series data analysis. Technical expertise could be inferred from such quantitative performance analysis.


Assuntos
Mãos , Aprendizado de Máquina , Humanos , Anastomose Cirúrgica/métodos , Mãos/cirurgia , Algoritmos , Neurocirurgiões
8.
Front Oncol ; 13: 1156812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287908

RESUMO

Introduction: Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. Methods: Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an in utero electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. Results: Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. Discussion: Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection.

9.
Oper Neurosurg (Hagerstown) ; 24(4): 432-444, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701667

RESUMO

BACKGROUND: Immersive anatomic environments offer an alternative when anatomic laboratory access is limited, but current three-dimensional (3D) renderings are not able to simulate the anatomic detail and surgical perspectives needed for microsurgical education. OBJECTIVE: To perform a proof-of-concept study of a novel photogrammetry 3D reconstruction technique, converting high-definition (monoscopic) microsurgical images into a navigable, interactive, immersive anatomy simulation. METHODS: Images were acquired from cadaveric dissections and from an open-access comprehensive online microsurgical anatomic image database. A pretrained neural network capable of depth estimation from a single image was used to create depth maps (pixelated images containing distance information that could be used for spatial reprojection and 3D rendering). Virtual reality (VR) experience was assessed using a VR headset, and augmented reality was assessed using a quick response code-based application and a tablet camera. RESULTS: Significant correlation was found between processed image depth estimations and neuronavigation-defined coordinates at different levels of magnification. Immersive anatomic models were created from dissection images captured in the authors' laboratory and from images retrieved from the Rhoton Collection. Interactive visualization and magnification allowed multiple perspectives for an enhanced experience in VR. The quick response code offered a convenient method for importing anatomic models into the real world for rehearsal and for comparing other anatomic preparations side by side. CONCLUSION: This proof-of-concept study validated the use of machine learning to render 3D reconstructions from 2-dimensional microsurgical images through depth estimation. This spatial information can be used to develop convenient, realistic, and immersive anatomy image models.


Assuntos
Realidade Virtual , Humanos , Simulação por Computador , Dissecação , Fotogrametria , Aprendizado de Máquina
10.
J Neurosurg ; 138(3): 587-597, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901698

RESUMO

OBJECTIVE: The authors evaluated the feasibility of using the first clinical-grade confocal laser endomicroscopy (CLE) system using fluorescein sodium for intraoperative in vivo imaging of brain tumors. METHODS: A CLE system cleared by the FDA was used in 30 prospectively enrolled patients with 31 brain tumors (13 gliomas, 5 meningiomas, 6 other primary tumors, 3 metastases, and 4 reactive brain tissue). A neuropathologist classified CLE images as interpretable or noninterpretable. Images were compared with corresponding frozen and permanent histology sections, with image correlation to biopsy location using neuronavigation. The specificities and sensitivities of CLE images and frozen sections were calculated using permanent histological sections as the standard for comparison. A recently developed surgical telepathology software platform was used in 11 cases to provide real-time intraoperative consultation with a neuropathologist. RESULTS: Overall, 10,713 CLE images from 335 regions of interest were acquired. The mean duration of the use of the CLE system was 7 minutes (range 3-18 minutes). Interpretable CLE images were obtained in all cases. The first interpretable image was acquired within a mean of 6 (SD 10) images and within the first 5 (SD 13) seconds of imaging; 4896 images (46%) were interpretable. Interpretable image acquisition was positively correlated with study progression, number of cases per surgeon, cumulative length of CLE time, and CLE time per case (p ≤ 0.01). The diagnostic accuracy, sensitivity, and specificity of CLE compared with frozen sections were 94%, 94%, and 100%, respectively, and the diagnostic accuracy, sensitivity, and specificity of CLE compared with permanent histological sections were 92%, 90%, and 94%, respectively. No difference was observed between lesion types for the time to first interpretable image (p = 0.35). Deeply located lesions were associated with a higher percentage of interpretable images than superficial lesions (p = 0.02). The study met the primary end points, confirming the safety and feasibility and acquisition of noninvasive digital biopsies in all cases. The study met the secondary end points for the duration of CLE use necessary to obtain interpretable images. A neuropathologist could interpret the CLE images in 29 (97%) of 30 cases. CONCLUSIONS: The clinical-grade CLE system allows in vivo, intraoperative, high-resolution cellular visualization of tissue microstructure and identification of lesional tissue patterns in real time, without the need for tissue preparation.


Assuntos
Neoplasias Encefálicas , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Microscopia Confocal/métodos , Neoplasias Encefálicas/cirurgia , Lasers
11.
J Neurosurg ; 138(3): 732-739, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932275

RESUMO

OBJECTIVE: Microsurgical training remains indispensable to master cerebrovascular bypass procedures, but simulation models for training that accurately replicate microanastomosis in narrow, deep-operating corridors are lacking. Seven simulation bypass scenarios were developed that included head models in various surgical positions with premade approaches, simulating the restrictions of the surgical corridors and hand positions for microvascular bypass training. This study describes these models and assesses their validity. METHODS: Simulation models were created using 3D printing of the skull with a designed craniotomy. Brain and external soft tissues were cast using a silicone molding technique from the clay-sculptured prototypes. The 7 simulation scenarios included: 1) temporal craniotomy for a superficial temporal artery (STA)-middle cerebral artery (MCA) bypass using the M4 branch of the MCA; 2) pterional craniotomy and transsylvian approach for STA-M2 bypass; 3) bifrontal craniotomy and interhemispheric approach for side-to-side bypass using the A3 branches of the anterior cerebral artery; 4) far lateral craniotomy and transcerebellomedullary approach for a posterior inferior cerebellar artery (PICA)-PICA bypass or 5) PICA reanastomosis; 6) orbitozygomatic craniotomy and transsylvian-subtemporal approach for a posterior cerebral artery bypass; and 7) extended retrosigmoid craniotomy and transcerebellopontine approach for an occipital artery-anterior inferior cerebellar artery bypass. Experienced neurosurgeons evaluated each model by practicing the aforementioned bypasses on the models. Face and content validities were assessed using the bypass participant survey. RESULTS: A workflow for model production was developed, and these models were used during microsurgical courses at 2 neurosurgical institutions. Each model is accompanied by a corresponding prototypical case and surgical video, creating a simulation scenario. Seven experienced cerebrovascular neurosurgeons practiced microvascular anastomoses on each of the models and completed surveys. They reported that actual anastomosis within a specific approach was well replicated by the models, and difficulty was comparable to that for real surgery, which confirms the face validity of the models. All experts stated that practice using these models may improve bypass technique, instrument handling, and surgical technique when applied to patients, confirming the content validity of the models. CONCLUSIONS: The 7 bypasses simulation set includes novel models that effectively simulate surgical scenarios of a bypass within distinct deep anatomical corridors, as well as hand and operator positions. These models use artificial materials, are reusable, and can be implemented for personal training and during microsurgical courses.


Assuntos
Revascularização Cerebral , Humanos , Revascularização Cerebral/métodos , Craniotomia , Procedimentos Neurocirúrgicos/métodos , Encéfalo , Crânio
12.
Surg Neurol Int ; 13: 350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128100

RESUMO

Background: Pineal cysts (PCs) are benign lesions commonly found on intracranial imaging. Despite their high prevalence, there is no clear consensus on the most appropriate management of patients with PCs, especially those with symptomatic nonhydrocephalic cysts. Methods: A retrospective analysis was performed on 142 patients with PCs (103 surgical cases and 39 conservatively managed cases). Data were examined, including clinical presentation, imaging findings, ophthalmological status, natural course, postoperative outcomes, and complications. Results: Surgical group: the most common symptom was headache (92%), followed by signs of intracranial hypertension due to hydrocephalus (22%). New radiological feature of PCs was found in 11 patients. From 71 patients with long-term follow-up, headache completely resolved in 44 (62%) patients; marked improvement was observed in 20 (29%); in 7 (9%) - headache remained unchanged. The most common postoperative complication was neuro-ophthalmological disorders (23%), with a tendency for resolution in the long-term follow-up period. Neuro-ophthalmological symptoms at last follow-up included upward gaze palsy (6%) and skew deviation (5%), followed by convergence disorders (3%) and eyelid-retraction (2%). Natural course group: PC size remained stable in 34 (87%) patients during the follow-up period. The patient's gender or age was not a significant predictor of cyst growth (P = 0.4, P = 0.56). Conclusion: The majority of patients with a newly diagnosed PC remain clinically and radiologically stable. Patients with nonhydrocephalic PCs and intractable headaches experience significant relief in headache symptoms, but are at risk of mild to moderate neuro-ophthalmological disorders. The natural course of PCs and factors promoting their growth still remains poorly defined.

13.
Front Oncol ; 12: 979748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091140

RESUMO

Background: The new US Food and Drug Administration-cleared fluorescein sodium (FNa)-based confocal laser endomicroscopy (CLE) imaging system allows for intraoperative on-the-fly cellular level imaging. Two feasibility studies have been completed with intraoperative use of this CLE system in ex vivo and in vivo modalities. This study quantitatively compares the image quality and diagnostic performance of ex vivo and in vivo CLE imaging. Methods: Images acquired from two prospective CLE clinical studies, one ex vivo and one in vivo, were analyzed quantitatively. Two image quality parameters - brightness and contrast - were measured using Fiji software and compared between ex vivo and in vivo images for imaging timing from FNa dose and in glioma, meningioma, and intracranial metastatic tumor cases. The diagnostic performance of the two studies was compared. Results: Overall, the in vivo images have higher brightness and contrast than the ex vivo images (p < 0.001). A weak negative correlation exists between image quality and timing of imaging after FNa dose for the ex vivo images, but not the in vivo images. In vivo images have higher image quality than ex vivo images (p < 0.001) in glioma, meningioma, and intracranial metastatic tumor cases. In vivo imaging yielded higher sensitivity and negative predictive value than ex vivo imaging. Conclusions: In our setting, in vivo CLE optical biopsy outperforms ex vivo CLE by producing higher quality images and less image deterioration, leading to better diagnostic performance. These results support the in vivo modality as the modality of choice for intraoperative CLE imaging.

14.
Oper Neurosurg (Hagerstown) ; 23(5): 396-405, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103356

RESUMO

BACKGROUND: Large, destructive intracranial and extracranial lesions at the jugular foramen (JF) and anterior craniovertebral junction (CVJ) are among the most challenging lesions to resect. OBJECTIVE: To compare the extreme lateral transodontoid approach (ELTOA) with the extreme medial endoscopic endonasal approach (EMEEA) to determine the most effective surgical approach to the JF and CVJ. METHODS: Seven formalin-fixed cadaveric heads were dissected. Using neuronavigation, we quantitatively measured and compared the exposure of the intracranial and extracranial neurovascular structures, the drilled area of the clivus and the C1 vertebra, and the area of exposure of the brainstem. RESULTS: The mean total drilled area of the clivus was greater with the EMEEA than with the ELTOA (1043.5 vs 909.4 mm 2 , P = .02). The EMEEA provided a longer exposure of the extracranial cranial nerves (CNs) IX, X, and XI compared with the ELTOA (cranial nerve [CN] IX: 18.8 vs 12.0 mm, P = .01; CN X: 19.2 vs 10.4 mm, P = .003; and CN XI, 18.1 vs 11.9 mm, P = .04). The EMEEA, compared with the ELTOA, provided a significantly greater area of exposure of the contralateral ventromedial medulla (289.5 vs 80.9 mm 2 , P < .001) and pons (237.5 vs 86.2 mm 2 , P = .005) but less area of exposure of the ipsilateral dorsolateral medulla (51.5 vs 205.8 mm 2 , P = .008). CONCLUSION: The EMEEA and ELTOA provide optimal exposures to different aspects of the CVJ and JF. A combination of these approaches can compensate for their disadvantages and achieve significant exposure.


Assuntos
Forâmen Jugular , Fossa Craniana Posterior/cirurgia , Endoscopia , Formaldeído , Humanos , Nariz/cirurgia
15.
J Neurol Surg B Skull Base ; 83(5): 526-535, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36097500

RESUMO

Objectives Endoscopic endonasal approaches (EEAs) for petrosectomies are evolving to reduce perioperative brain injuries and complications. Surgical terminology, techniques, landmarks, advantages, and limitations of these approaches remain ill defined. We quantitatively analyzed the anatomical relationships and differences between EEA exposures for medial, inferior, and inferomedial petrosectomies. Design This study presents anatomical dissection and quantitative analysis. Setting Cadaveric heads were used for dissection. EEAs were performed using the medial petrosectomy (MP), the inferior petrosectomy (IP), and the inferomedial petrosectomy (IMP) techniques. Participants Six cadaver heads (12 sides, total) were dissected; each technique was performed on four sides. Main Outcomes and Measures Outcomes included the area of exposure, visible distances, angles of attack, and bone resection volume. Results The IMP technique provided a greater area of exposure ( p < 0.01) and bone resection volume ( p < 0.01) when compared with the MP and IP techniques. The IMP technique had a longer working length of the abducens nerve (cranial nerve [CN] VI) than the MP technique ( p < 0.01). The IMP technique demonstrated higher angles of attack to specific neurovascular structures when compared with the MP (midpons [ p = 0.04], anterior inferior cerebellar artery [ p < 0.01], proximal part of the cisternal CN VI segment [ p = 0.02]) and IP (flocculus [ p = 0.02] and the proximal [ p = 0.02] and distal parts [ p = 0.02] of the CN VII/VIII complex) techniques. Conclusion Each of these approaches offers varying degrees of access to the petroclival region, and the surgical approach should be appropriately tailored to the pathology. Overall, the IMP technique provides greater EEA surgical exposure to vital neurovascular structures than the MP and the IP techniques.

16.
World Neurosurg ; 167: 122, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055618

RESUMO

A man in his early 20s presented with diplopia. Imaging revealed a pineal region hemorrhagic lesion, suggestive of cavernous malformation.1-6 The patient underwent an endoscopic third ventriculostomy and was transferred to our institution. In the sitting position, he underwent a supracerebellar infratentorial approach. Gross total resection was achieved without new neurological deficits. Pathologic diagnosis was consistent with a mixed germ cell tumor. The patient was referred to the radiation oncology department. Gravity retraction of the cerebellum was achieved with the supracerebellar infratentorial approach in the sitting position, torcular craniotomy exposed the major sinuses, and drainage of cerebrospinal fluid widened the surgical corridor and facilitated resection of this lesion (Video 1). Histopathological findings are critical to establish the correct diagnosis because magnetic resonance imaging findings can be misleading. The patient provided written informed consent for the procedure.


Assuntos
Neoplasias Encefálicas , Glândula Pineal , Pinealoma , Masculino , Humanos , Procedimentos Neurocirúrgicos/métodos , Pinealoma/diagnóstico por imagem , Pinealoma/cirurgia , Pinealoma/patologia , Glândula Pineal/diagnóstico por imagem , Glândula Pineal/cirurgia , Glândula Pineal/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Craniotomia/métodos
17.
Oper Neurosurg (Hagerstown) ; 23(3): 261-267, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972091

RESUMO

BACKGROUND: Precise communication between neurosurgeons and pathologists is crucial for optimizing patient care, especially for intraoperative diagnoses. Confocal laser endomicroscopy (CLE) combined with a telepathology software platform (TSP) provides a novel venue for neurosurgeons and pathologists to review CLE images and converse intraoperatively in real-time. OBJECTIVE: To describe the feasibility of integrating CLE and a TSP in the surgical workflow for real-time review of in vivo digital fluorescence tissue imaging in 3 patients with intracranial tumors. METHODS: Although the neurosurgeon used the CLE probe to generate fluorescence images of histoarchitecture within the operative field that were displayed on monitors in the operating room, the pathologist simultaneously remotely viewed the CLE images. The neurosurgeon and pathologist discussed in real-time the histological structures of intraoperative imaging locations. RESULTS: The neurosurgeon placed the CLE probe at various locations on and around the tumor, in the surgical resection bed, and on surrounding brain tissue with communication through the TSP. The neurosurgeon oriented the pathologist to the location of the CLE, and the pathologist and neurosurgeon discussed the CLE images in real-time. The TSP and CLE were integrated successfully and rapidly in the operating room in all 3 cases. No patient had perioperative complications. CONCLUSION: Two novel digital neurosurgical cellular imaging technologies were combined with intraoperative neurosurgeon-pathologist communication to guide the identification of abnormal histoarchitectural tissue features in real-time. CLE with the TSP may allow rapid decision-making during tumor resection that may hold significant advantages over the frozen section process and surgical workflow in general.


Assuntos
Neurocirurgia , Telepatologia , Humanos , Lasers , Microscopia Confocal , Encaminhamento e Consulta
18.
Neurosurg Focus ; 52(6): E9, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35921184

RESUMO

OBJECTIVE: Communication between neurosurgeons and pathologists is mandatory for intraoperative decision-making and optimization of resection, especially for invasive masses. Handheld confocal laser endomicroscopy (CLE) technology provides in vivo intraoperative visualization of tissue histoarchitecture at cellular resolution. The authors evaluated the feasibility of using an innovative surgical telepathology software platform (TSP) to establish real-time, on-the-fly remote communication between the neurosurgeon using CLE and the pathologist. METHODS: CLE and a TSP were integrated into the surgical workflow for 11 patients with brain masses (6 patients with gliomas, 3 with other primary tumors, 1 with metastasis, and 1 with reactive brain tissue). Neurosurgeons used CLE to generate video-flow images of the operative field that were displayed on monitors in the operating room. The pathologist simultaneously viewed video-flow CLE imaging using a digital tablet and communicated with the surgeon while physically located outside the operating room (1 pathologist was in another state, 4 were at home, and 6 were elsewhere in the hospital). Interpretations of the still CLE images and video-flow CLE imaging were compared with the findings on the corresponding frozen and permanent H&E histology sections. RESULTS: Overall, 24 optical biopsies were acquired with mean ± SD 2 ± 1 optical biopsies per case. The mean duration of CLE system use was 1 ± 0.3 minutes/case and 0.25 ± 0.23 seconds/optical biopsy. The first image with identifiable histopathological features was acquired within 6 ± 0.1 seconds. Frozen sections were processed within 23 ± 2.8 minutes, which was significantly longer than CLE usage (p < 0.001). Video-flow CLE was used to correctly interpret tissue histoarchitecture in 96% of optical biopsies, which was substantially higher than the accuracy of using still CLE images (63%) (p = 0.005). CONCLUSIONS: When CLE is employed in tandem with a TSP, neurosurgeons and pathologists can view and interpret CLE images remotely and in real time without the need to biopsy tissue. A TSP allowed neurosurgeons to receive real-time feedback on the optically interrogated tissue microstructure, thereby improving cross-functional communication and intraoperative decision-making and resulting in significant workflow advantages over the use of frozen section analysis.


Assuntos
Glioma , Telepatologia , Endoscopia/métodos , Humanos , Lasers , Microscopia Confocal/métodos
19.
Seizure ; 101: 162-176, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041364

RESUMO

PURPOSE: Multiple hippocampal transection (MHT) is a surgical technique that offers adequate seizure control with minimal perioperative morbidity. However, there is little evidence available to guide neurosurgeons in selecting this technique for use in appropriate patients. This systematic review analyzes patient-level data associated with MHT for intractable epilepsy, focusing on postoperative seizure control and memory outcomes. METHODS: The systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant articles were identified from 3 databases (PubMed, Medline, Embase) up to August 1, 2021. Inclusion criteria were that the majority of patients had received a diagnosis of intractable epilepsy, the article was written in English, MHT was the primary procedure, and patient-level metadata were included. RESULTS: Fifty-nine unique patients who underwent MHT were identified across 11 studies. Ten (17%) of 59 patients underwent MHT alone. Forty-three (75%) of 57 patients who had a follow-up 12 months or longer were seizure free at last follow-up. With respect to postoperative verbal memory retention, 9 of 38 (24%) patient test scores did not change, 14 (37%) decreased, and 16 (42%) increased. With respect to postoperative nonverbal memory retention, 12 of 38 (34%) patient test scores did not change, 13 (34%) decreased, and 13 (33%) increased. CONCLUSION: There are few reported patients analyzed after MHT. Although the neurocognitive benefits of MHT are unproven, this relatively novel technique has shown promise in the management of seizures in patients with intractable epilepsy. However, structured trials assessing MHT in isolation are warranted.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/cirurgia , Humanos , Memória , Complicações Pós-Operatórias , Convulsões/cirurgia , Resultado do Tratamento
20.
Surg Neurol Int ; 13: 230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855136

RESUMO

Background: Chronic subdural hematoma (CSDH) commonly affects older individuals and is associated with a relatively high rate of recurrence after surgery. Many studies have created grading systems to identify patients at high risk of CSDH recurrence after the initial surgery. However, no system has been adopted widely. The authors present the first CSDH grading system created from a population-based single-center data set. Methods: A single-center Puerto Rican population-based retrospective analysis was performed on consecutive patients treated for a CSDH at a designated institution from July 1, 2017 to December 31, 2019. Univariate and multivariate analyses were used to create a CSDH recurrence grading scale. Retrospective validation was conducted on this sample population. Results: The study included 428 patients. Preoperative midline shift, postoperative midline shift, and size of postoperative subdural space differed between the recurrence and nonrecurrence groups (P = 0.03, 0.002, and 0.002, respectively). A multivariate analysis was used to create a 10-point grading scale comprising four independent variables. Recurrence rates progressively increased from the low-risk (0-3 points) to high-risk (8-10 points) groups (2.9% vs. 20.3%; P < 0.001). Conclusion: A 10-point grading scale for CSDH recurrence was developed with four components: preoperative midline shift (≤1 and >1 cm), laterality (bilateral, unilateral-right, and unilateral-left), size of postoperative subdural space (≤1.6 and >1.6 cm), and pneumocephalus (present or absent). Patients who scored higher on the scale had a higher risk of recurrence. This CSDH grading scale has implications for Puerto Rico and the general population as the elderly population increases worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...